Classification of High-Resolution Remotely Sensed Image by Combining Spectral, Structural and Semantic Features Using SVM Approach
نویسنده
چکیده
I. Introduction Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object. The term generally refers to the use of aerial sensor technologies to detect and classify objects on Earth by means of propagated signals. There are two main types of remote sensing: passive remote sensing and active remote sensing. Passive sensors detect natural radiation that is emitted or reflected by the object or surrounding areas. Active collection, on the other hand, emits energy in order to scan objects and areas where upon a sensor then detects and measures the radiation that is reflected or backscattered from the target. Remote sensing makes it possible to collect data on dangerous or inaccessible areas. Orbital platforms collect and transmit data from different parts of the electromagnetic spectrum, which in conjunction with larger scale aerial or ground-based sensing and analysis, provides researchers with enough information to monitor trends such as El Niño and other natural long and short term phenomena.
منابع مشابه
Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملA Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data
Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...
متن کاملVHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine
Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...
متن کاملClassification of Objects from High Resolution Remote Sensing Images using eCognition
High resolution satellite images offer rich abundance information of the earth surface including spatial, spectral and contextual information. In order to extract the information from these high resolution images, we need to utilize the spatial and contextual information of an object and its surroundings. If pixel based approaches are applied to extract information from such remotely sensed dat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014